Goto

Collaborating Authors

 Consumer Health


Indoor Air Quality Dataset with Activities of Daily Living in Low to Middle-income Communities

Neural Information Processing Systems

In recent years, indoor air pollution has posed a significant threat to our society, claiming over 3.2 million lives annually. Developing nations, such as India, are most affected since lack of knowledge, inadequate regulation, and outdoor air pollution lead to severe daily exposure to pollutants. However, only a limited number of studies have attempted to understand how indoor air pollution affects developing countries like India. To address this gap, we present spatiotemporal measurements of air quality from 30 indoor sites over six months during summer and winter seasons. The sites are geographically located across four regions of type: rural, suburban, and urban, covering the typical low to middle-income population in India.


CALANet: Cheap All-Layer Aggregation for Human Activity Recognition Jaegyun Park 1, Dae-Won Kim

Neural Information Processing Systems

With the steady growth of sensing technology and wearable devices, sensor-based human activity recognition has become essential in widespread applications, such as healthcare monitoring and fitness tracking, where accurate and real-time systems are required. To achieve real-time response, recent studies have focused on lightweight neural network models. Specifically, they designed the network architectures by restricting the number of layers shallowly or connections of each layer. However, these approaches suffer from limited accuracy because the classifier only uses the features at the last layer. In this study, we propose a cheap all-layer aggregation network, CALANet, for accuracy improvement while maintaining the efficiency of existing real-time HAR models. Specifically, CALANet allows the classifier to aggregate the features for all layers, resulting in a performance gain. In addition, this work proves that the theoretical computation cost of CALANet is equivalent to that of conventional networks. Evaluated on seven publicly available datasets, CALANet outperformed existing methods, achieving state-of-the-art performance.


AIhub monthly digest: May 2025 โ€“ materials design, object state classification, and real-time monitoring for healthcare data

AIHub

Welcome to our monthly digest, where you can catch up with any AIhub stories you may have missed, peruse the latest news, recap recent events, and more. This month, we learn about drug and material design using generative models and Bayesian optimization, find out about a system for real-time monitoring for healthcare data, and explore domain-specific distribution shifts in volunteer-collected biodiversity datasets. Ananya Joshi recently completed her PhD, where she developed a system that experts have used for the past two years to identify respiratory outbreaks (like COVID-19) in large-scale healthcare streams across the United States. In this interview, she tells us more about this project, how healthcare applications inspire basic AI research, and her future plans. Onur Boyar is a PhD student at Nagoya university, working on generative models and Bayesian methods for materials and drug design.


7c3465ba08732cc2db38f070bfae601a-Supplemental-Datasets_and_Benchmarks_Track.pdf

Neural Information Processing Systems

Currently the dataset can be downloaded under this link (2.2 GB, compressed tar file): The Muscles in Time dataset will be published under a CC BY-NC 4.0 license as defined under Our data generation pipeline is licensed under Apache License Version 2.0 as defined under Data structure The structure of the provided MinT data is intentionally kept simple. The first and last 0.14 seconds are cut off since the muscle activation A short example on the musint package usage is displayed in Listing 2. The musint package can be installed via pip install musint. In Figure 9 we provide additional information on the data analyzed provided with Muscles in Time. Total Capture makes up a small part of the dataset with exceptionally long sequences. Dataset provides the largest contribution with 3.2h of analyzed recordings.


Muscles in Time: Learning to Understand Human Motion by Simulating Muscle Activations

Neural Information Processing Systems

Exploring the intricate dynamics between muscular and skeletal structures is pivotal for understanding human motion. This domain presents substantial challenges, primarily attributed to the intensive resources required for acquiring ground truth muscle activation data, resulting in a scarcity of datasets. In this work, we address this issue by establishing Muscles in Time (MinT), a large-scale synthetic muscle activation dataset. For the creation of MinT, we enriched existing motion capture datasets by incorporating muscle activation simulations derived from biomechanical human body models using the OpenSim platform, a common approach in biomechanics and human motion research. Starting from simple pose sequences, our pipeline enables us to extract detailed information about the timing of muscle activations within the human musculoskeletal system. Muscles in Time contains over nine hours of simulation data covering 227 subjects and 402 simulated muscle strands. We demonstrate the utility of this dataset by presenting results on neural network-based muscle activation estimation from human pose sequences with two different sequence-to-sequence architectures.


MO-DDN: A Coarse-to-Fine Attribute-based Exploration Agent for Multi-object Demand-driven Navigation Hongcheng Wang

Neural Information Processing Systems

The process of satisfying daily demands is a fundamental aspect of humans' daily lives. With the advancement of embodied AI, robots are increasingly capable of satisfying human demands. Demand-driven navigation (DDN) is a task in which an agent must locate an object to satisfy a specified demand instruction, such as "I am thirsty." The previous study typically assumes that each demand instruction requires only one object to be fulfilled and does not consider individual preferences. However, the realistic human demand may involve multiple objects.


SMART: Towards Pre-trained Missing-Aware Model for Patient Health Status Prediction

Neural Information Processing Systems

Electronic health record (EHR) data has emerged as a valuable resource for analyzing patient health status. However, the prevalence of missing data in EHR poses significant challenges to existing methods, leading to spurious correlations and suboptimal predictions. While various imputation techniques have been developed to address this issue, they often obsess difficult-to-interpolate details and may introduce additional noise when making clinical predictions. To tackle this problem, we propose SMART, a Self-Supervised Missing-Aware RepresenTation Learning approach for patient health status prediction, which encodes missing information via missing-aware temporal and variable attentions and learns to impute missing values through a novel self-supervised pre-training approach which reconstructs missing data representations in the latent space rather than in input space as usual. By adopting elaborated attentions and focusing on learning higher-order representations, SMART promotes better generalization and robustness to missing data.


A Multimodal Dataset for Dairy Cattle Monitoring

Neural Information Processing Systems

Precision livestock farming (PLF) has been transformed by machine learning (ML), enabling more precise and timely interventions that enhance overall farm productivity, animal welfare, and environmental sustainability. However, despite the availability of various sensing technologies, few datasets leverage multiple modalities, which are crucial for developing more accurate and efficient monitoring devices and ML models.


Benchmarking Generative Models on Computational Thinking Tests in Elementary Visual Programming

Neural Information Processing Systems

Generative models have demonstrated human-level proficiency in various benchmarks across domains like programming, natural sciences, and general knowledge. Despite these promising results on competitive benchmarks, they still struggle with seemingly simple problem-solving tasks typically carried out by elementary-level students. How do state-of-the-art models perform on standardized programmingrelated tests designed to assess computational thinking and problem-solving skills at schools? In this paper, we curate a novel benchmark involving computational thinking tests grounded in elementary visual programming domains. Our initial results show that state-of-the-art models like GPT-4o and Llama3 barely match the performance of an average school student. To further boost the performance of these models, we fine-tune them using a novel synthetic data generation methodology. The key idea is to develop a comprehensive dataset using symbolic methods that capture different skill levels, ranging from recognition of visual elements to multi-choice quizzes to synthesis-style tasks. We showcase how various aspects of symbolic information in synthetic data help improve fine-tuned models' performance. We will release the full implementation and datasets to facilitate further research on enhancing computational thinking in generative models.


Benchmarking Generative Models on Computational Thinking Tests in Elementary Visual Programming

Neural Information Processing Systems

Generative models have demonstrated human-level proficiency in various benchmarks across domains like programming, natural sciences, and general knowledge. Despite these promising results on competitive benchmarks, they still struggle with seemingly simple problem-solving tasks typically carried out by elementary-level students. How do state-of-the-art models perform on standardized programmingrelated tests designed to assess computational thinking and problem-solving skills at schools? In this paper, we curate a novel benchmark involving computational thinking tests grounded in elementary visual programming domains. Our initial results show that state-of-the-art models like GPT-4o and Llama3 barely match the performance of an average school student. To further boost the performance of these models, we fine-tune them using a novel synthetic data generation methodology. The key idea is to develop a comprehensive dataset using symbolic methods that capture different skill levels, ranging from recognition of visual elements to multi-choice quizzes to synthesis-style tasks. We showcase how various aspects of symbolic information in synthetic data help improve fine-tuned models' performance. We will release the full implementation and datasets to facilitate further research on enhancing computational thinking in generative models.